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Current monitoring in power grid is essential for the stability and reliability of the system. We have proposed a novel method for 

transmission line current reconstruction. Based on regularization process, this method deals with the ill-posed current inverse problem 

when measurement data is mixed with noise in practical application. The analysis proves the feasibility and robustness of the method 

compared with two other methods, making it promising in real-time monitoring in power grid.  
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I. INTRODUCTION 

EAL-TIME monitoring in power grid is essential to keep 

the stability and reliability of the system. In current 

measurement, benefiting from advanced sensing techniques 

such as Hall sensors and GMR/TMR sensors, enormous and 

abundant data can be achieved for the state monitoring of 

transmission lines and electrical equipment. However, the 

reconstruction of current sources from magnetic field 

measurement results, which can be attributed to the inverse 

problem between the magnetic field and measured current, 

still remains an open issue.  

Some researchers focus on the reconstruction of currents in 

transmission lines to realize the state monitoring. The 

mathematical optimization method has been utilized to 

calculate the currents [1]. However, since most inverse 

problems are ill-posed, the traditional optimization method is 

not suitable when noise is mixed with the magnetic field 

measurement results. Regularization has been proved to be an 

effective way to solve an ill-posed inverse problem by 

introducing additional information. It has been generally 

applied in the area of medical imaging and geological 

detection [2].  

In this digest, we proposed a novel method to calculate the 

currents of three-phase transmission lines based on the 

regularization process. The method and two other methods 

were analyzed in a practical example to prove the feasibility 

and stability of regularization.  

II. MODEL CONSTRUCTION 

The configuration of a 500 kV transmission line is 

illustrated in Fig. 1. The reconstruction of current sources in 

this digest focuses on the calculation in 2D plane, regardless 

of the sag and galloping of transmission lines. The influence 

of image current underground is neglected based on the 

previous research [1]. 

According to the Ampere’s Law, the magnetic field 

generated by current source I at measurement point P in a 2D 

plane is indicated in (1).  
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Fig. 1. Configuration of a 500 kV transmission line. A, B and C represent three 

phases of a 500 kV transmission line. P is the measurement point.  

where r is the vector from the current source to the 

measurement point P, dl is the vector of differential current 

source and is (0,0,1) in this model.  

The magnetic field at measurement point P in Fig. 1 is the 

superimposing of magnetic fields from each phase current, and 

it is described by (2).  
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The equation can be rewritten as a matrix form in (3). 

H Ai  (3) 

where H is the measurement magnetic field vector including 

two orthogonal components, A is the lead-field matrix 

determined by the location of current sources and 

measurement points, i is the current source including the 

amplitude and phase information.  

The reconstruction of current sources is to calculate i 

according to the lead-field matrix A and measurement results 

H. In practice, the H vector can be inevitably mixed with noise 

concerning the limitations of measurement system, and the 

lead-field matrix A is often ill-conditioned, meaning that even 

small errors in the measurement results could lead to large 

calculation errors in current source reconstruction using the 

traditional solution such as shown in (4) and other 

optimization method.  
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Tikhonov regularization is an effective and common 

method to solve the ill-posed problem by introducing 

additional L2 norm penalty to the optimization process. The 

minimization problem would be rewritten as in (5).  
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where L is often chosen as a multiple of identity matrix for 

smoothness, λ is a positive parameter called the regularization 

parameter.  

We choose the proper regularization parameter λ by L-curve 

method, according to the plot of squared norm of the 

regularized term 
2

2
Li  versus squared norm of the residual 

vector 
2

2
H Ai  in log-log scale. The above minimization 

problem in (5) is then equivalent to (6).  
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To avoid the fluctuation in one-step Tikhonov regularization, 

the iteration process is used for a more stable calculation result. 

Based on the Newton-Raphson method, the numerical 

iteration process is illustrated in (7). 
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where  ˆ
kF i  is the function of above minimization problem.  

 The equation can be rewritten as (8) when the function is 

substituted by the matrix elements.  
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The iteration process stops when the difference between 
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ki  reaches the preset criterion. The current results 
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including the amplitudes and phases of each current phase are 

the calculation results.  

III. RESULTS AND DISCUSSION 

Based on the above model analysis, a calculation example 

including two cases was proposed to prove the validity and 

feasibility of the method. The measurement points were 

assigned at the height of 28 m, with a span from -3 m to 3 m. 

The distance between each measurement point was 1 m. The 

magnetic field vectors were originally calculated according to 

Ampere’s Law at each measurement point. In the 

reconstruction process, ten groups of calculated magnetic field 

vectors were mixed with relative random noise between -5% 

and 5% to simulate the practical measurement situation. The 

current calculation results using regularization method were 

compared with the results using (4) and using the simulated 

annealing (SA) optimization algorithm in MATLAB.  

A. Case 1: The balanced loading conditions 

In the normal operation state, the currents in transmission 

lines were respectively set as 1000ej0° A, 1000ej120° A and 

1000ej-120° A.  

The results are illustrated in Table I. The result of direct 

method has a large relative error of 50% in amplitude due to 

that the problem is ill-posed, and the result of simulated 

annealing algorithm is affected by initial value and has a 

largest amplitude error of 12.4%. The regularization method 

has a largest amplitude error of 1.3%. It is more accurate and 

stable concerning the ±5% noise added to the calculated 

magnetic field vectors, indicating better adaptability under this 

circumstance.  
TABLE I 

CURRENT RECONSTRUCTION RESULTS OF CASE 1 

Method Phase A B C 

Regularization Method 
Current/A 1009.5 999.0 1013.1 

Phase/° 0.62 119 -115 

Direct Method Using (4) 
Current/A 1111.7 1507.8 1050.6 

Phase/° -1.82 131 -130 

Simulated Annealing  

Algorithm 

Current/A 1053.2 1124.3 1044.1 

Phase/° 0 129 -123 

B. Case 2: The unbalanced loading conditions 

In the abnormal operation state, the currents in transmission 

lines were respectively set as 1000ej0° A, 800ej120° A and 

1000ej-120° A. 

The results are illustrated in Table II. The regularization 

method reconstructs the abnormal current successfully with 

approximate value. The largest amplitude error is 2.8%. The 

direct method indicates an obvious difference between the 

abnormal phase current and the other two phase currents, but 

the calculated values are inaccurate and has a largest 

amplitude error of 10.6%. The simulated annealing algorithm 

has a disadvantage in this case since it is strongly affected by 

the initial value, the error is even larger and reaches 15%.  
TABLE II 

CURRENT RECONSTRUCTION RESULTS OF CASE 2 

Method Phase A B C 

Regularization Method 
Current/A 985 811.2 972.3 

Phase/° -0.2 120 -119 

Direct Method Using (4) 
Current/A 1017.0 885.1 1077.7 

Phase/° 0 130 -127 
Simulated Annealing  

Algorithm 

Current/A 982.3 921.8 952 

Phase/° 0 110 -115 

The above calculation and discussion prove the 

regularization method as a robust and effective method in 

practical application for transmission line current source 

reconstruction in power grid.  

IV. CONCLUSION 

A novel method focusing on the current reconstruction of 

transmission lines has been proposed. The method is based on 

the Tikhonov regularization process in solving inverse 

problem. The calculation results indicate the method robust 

and effective in analyzing measurement data mixed with 5% 

relative random noise, proving it feasible for practical 

application in power grid.  
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